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Abstract
We consider the continuum limit of a recently introduced model for discretized
thick polymers, or tubes. We address both analytically and numerically how
the polymer thickness influences the decay of tangent–tangent correlations and
find how the persistence length scales with the thickness and the torsional
rigidity of the tube centreline. At variance with the worm-like chain model,
the phase diagram that we obtain for a continuous tube is richer; in particular,
for a given polymer thickness there exists a threshold value for the centreline
torsional rigidity separating a simple exponential decay of the tangent–tangent
correlation from an oscillatory one.

PACS numbers: 82.35.Lr, 87.15.−v, 36.20.Ey

Experimental studies of biopolymers have constantly stimulated the search for schematic
models apt for reproducing the observed kinetic and thermodynamic behaviour. In recent
years, two types of biopolymers have attracted most of these efforts: DNA and proteins. The
interest in the former has been sparked by the introduction of single-molecule experiments
which probed the elastic response of DNA upon stretching [1]. Considerable progress in the
rationalization of these experiments was made thanks to the worm-like chain (WLC) model
[2, 3] where the polymer is described as a continuous centreline possessing an effective bending
[2] and/or twisting [4, 5] rigidity. For protein modelling, instead, one of the goals is to capture
the main physico-chemical forces responsible for driving the folding process towards the
native state. Typical coarse-grained models adopt sophisticated energy functionals (often
with hundreds of parameters) in order to reproduce the observed variety of protein folds.
It has been recently argued, however, that the overburdening of the energy function can be
avoided by modelling explicitly the intrinsic thickness of proteins [6–9]. As we discuss later,
this is achieved through the introduction of suitable three-body interactions among triplets
of points constituting the polymer centreline [8, 10–13]. It is physically appealing that the
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thick-chain model has proved valuable also for the case of DNA in applications ranging from
the characterization of knotted DNA molecules [14] to the thermodynamics of DNA packaging
inside viral capsids and DNA elastic response [15].

By necessity, all numerical implementations of these models rely on the discretization of
the polymer centreline into a succession of beads whose ‘natural’ spacing is typically suggested
by the intrinsic granularity of the polymer itself (e.g. the separation of consecutive Cαs for
proteins or the base-pair spacing in dsDNA). From a theoretical perspective, it is therefore
desirable to characterize the thick-chain model in the continuum limit, where the bead spacing
tends to zero (analogously to the WLC limit of the Kratky–Porod model). This continuum
limit has, so far, been considered only for characterizing the limited repertoire of ideal knots.
Motivated by the potentially wide range of applicability of the thick-polymer model, in this
letter we take the perspective of addressing the statistical mechanics of generalized thick-
polymer models in the continuum limit. In particular, we introduce in the Hamiltonian a
penalty for the geometrical torsion of the tube centreline and, initially, consider the constraints
induced by the finite polymer thickness only at a local level, a simplification usually adopted
to allow analytical progress [4, 5]. From the exact analysis, it emerges that accounting for the
centreline torsional rigidity term (1) allows us to get a finite persistence length in the limit of
a continuous thick polymer and (2) introduces a novel feature in the behaviour of the tangent–
tangent correlation function, namely the presence of a threshold value for the torsional rigidity
which separates a monotonic decay from an oscillatory one. Finally, numerical Monte Carlo
simulations are employed to show that this behaviour persists also when the tube constraint
is enforced at non-local level. These findings highlight the rich behaviour of models where
the thickness is treated explicitly. As a comparison, we consider the case of a WLC in
the presence of penalty for the centreline geometrical torsion. It is found that this model
exhibits either a simple exponential decay or an oscillatory one (with singular behaviour in the
continuum limit) depending, respectively, on the absence or presence of the torsional rigidity
but independently of its strength. In relation to the behaviour observed here, it should also
be noted that Panyukov and Rabin [16] have considered a rod-like chain fluctuating around a
stress-free helical conformation. Under these conditions they could observe a change from an
oscillatory to a simple exponential decay by increasing the fluctuation strength.

We model a polymer chain by means of a set of N consecutive beads, {�r0 . . . �rN−1}
connected by bonds of fixed length, a. The succession of beads constitutes the centreline
for our thick polymer. We shall denote by � and κt the thickness of the chain and the
torsional rigidity, respectively. Although we shall first focus on the case κt = 0 we will
develop a formalism general enough to be used also in the WLC with torsional penalty. By
analogy with the Frenet reference frame for continuous curves [17], we define an orthonormal
set associated with each bead, formed by the local tangent, t̂i ≡ (�ri+1 − �ri)/a, binormal,
b̂i ≡ t̂i ∧ t̂i−1/|t̂i ∧ t̂i−1| and ‘normal’, n̂i ≡ t̂i ∧ b̂i (see figure 1(a), note that in the usual
definition of the Frenet triad the normal has the opposite sign). It is possible to write recursion
equations relating the reference axes for bead i in terms of those for bead i −1, using the polar
angles θi and φi as in figure 1(b):




b̂i = cos φib̂i−1 − sin φin̂i−1,

t̂i = sin θi sin φib̂i−1 + cos θi t̂i−1 + sin θi cos φin̂i−1,

n̂i = cos θi sin φib̂i−1 − sin θi t̂i−1 + cos θi cos φin̂i−1.

Quite generally the joint probability distribution of angles, P(θ1, θ2, φ2, θ3, φ3, . . .), resulting
from the canonical average, will depend on the whole ensemble of interactions including
the steric ones. However, for the simplified case where the effects of the polymer thickness



Letter to the Editor L279

θ2

φ
2 n1

0t
r0

b

t
r

n

(B)

r r t

b

t
t2

1

1

1

3

2
21

1

1

(A)

Figure 1. Frenet reference frame for a discrete bead model. Note that θi ∈ [0, π ] is defined for
1 � i � N − 2, whereas φi ∈ [0, 2π ] is defined only for 2 � i � N − 2.

are treated only locally (as for twist and bending rigidity) then P factorizes in terms of the
probability distributions ρ(θi, φi) for each pair of angles θi, φi :

P(θ1, φ2, θ2, φ3, θ3, . . .) = ρθ (θ1)

N−2∏
i=2

ρ(θi, φi). (1)

Since we are considering a uniformly thick homopolymer, the same probability distribution,
ρ(θ, φ), is involved for all beads. In the following, the averages weighted with ρ will be
denoted as 〈·〉, while those calculated with respect toP will be written as 〈·〉P . The factorization
leads to a straightforward characterization of the decay along the chain of expectation values
such as fi ≡ 〈b̂i · �x〉P , gi ≡ 〈t̂i · �x〉P , hi ≡ 〈n̂i · �x〉P , where �x could be, e.g., t̂1, b̂1, n̂1. In fact,
f, g and h at location i + 1 are obtained from those at site i by the application of the following
transfer matrix:

T =

 〈cos φ〉 0 −〈sin φ〉

〈sin θ sin φ〉 〈cos θ〉 〈sin θ cos φ〉
〈cos θ sin φ〉 −〈sin θ〉 〈cos θ cos φ〉


 . (2)

If the eigenvalues of T are real, the decay of f, g and h will be monotonic, while if they are
imaginary there will be an oscillatory modulation.

We now consider two further simplifying assumptions: (i) the ‘bond’ angle θ and
the ‘dihedral’ angle φ contribute independently to the probability distribution ρ(θ, φ) =
ρθ (θ)ρφ(φ), and (ii) the system is invariant for chirality flipping ρφ(φ) = ρφ(−φ). In this case,
〈sin φ〉 = 0, and the transfer matrix T becomes block diagonal with an eigenvalue λ1 = 〈cos φ〉,
so that 〈b̂n · b̂1〉 = λn−1

1 = exp[−a(n − 1)/ξb] decays exponentially with a correlation length
ξb = −a/ ln〈cos φ〉. The remaining two eigenvalues are the solutions of the second-order
equation λ2 − bλ + c = 0 with b = 〈cos θ〉[1 + 〈cos φ〉], c = 〈cos φ〉[〈cos θ〉2 + 〈sin θ〉2].
The relevant quantity which discriminates between different decay properties is 
 ≡ b2 − 4c.
If 
 > 0, the two solutions λ2,3 = (±√


 + b)/2 are real and the correlation function
for tangent/normal vectors decays exponentially to zero, with the correlation length ξt =
−a/ ln λ2 being controlled by the largest eigenvalue. If 
 < 0, the two solutions are complex
conjugate, and the tangent–tangent correlation function exhibits an oscillatory decay:

〈t̂n+1 · t̂1〉 = cos[a/χ0 + an/χ ]

cos χ0
e−an/ξt , (3)

where ξt = −2a/ ln c, χ = a/ arctan(
√−
/b), and χ0 depends on initial conditions.

Within this general framework, we now consider different specific examples. We first
focus on the case of a WLC subject to a penalty for the geometrical torsion; the corresponding
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Figure 2. Boundary separating the oscillatory from the exponential decay of the tangent–tangent
correlation.

Hamiltonian is

HWLC = κb

2a

∑
i

|t̂i+1 − t̂i |2 +
κt

2a

∑
i

|b̂i+1 − b̂i |2, (4)

where κb, κt , are the bending and torsional rigidity, respectively, defined in such a way to
get back the usual Hamiltonian in the continuous limit, a → 0. We emphasize the fact that
the Hamiltonian (4) is entirely specified by the centreline geometry. The approach therefore
differs in spirit from those used to model the elasticity of rod-like chains. In these contexts,
starting from a stress-free reference configuration, one introduces a ‘material reference frame’
which is used to keep track not only of the deformations of a given reference frame, but also
of the twist around the centreline [17]. Although this latter information is clearly not available
in the model of equation (4) it is worth considering energy functions relying uniquely on
the knowledge of the centreline. In fact, for the important class of biopolymers constituted
by proteins, it is well known that the knowledge of a protein’s centreline (the Cα trace) and
sequence composition allows us to reconstruct the whole protein structure with high accuracy.

For the case of Hamiltonian (4), the probability distributions for bond and dihedral
angles taking, of course, into account the inverse temperature β are found to be ρθ (θ) =
sin θ exp

[
β κb

a
cos θ

]
; ρφ(φ) = exp

[
β κt

a
cos φ

]
. All averages appearing in the transfer matrix

elements of equation (2) can formally be expressed by means of modified Bessel functions
which, in turn, allow us to identify the boundary, 
 = 0, separating the oscillatory from the
monotonic decay of tangent correlations, see figure 2. In the continuum limit, a → 0, the
angles θ and φ contributing significantly to the average come from a region centred around
zero and of widths

√
a/βκb and

√
a/βκt , respectively and the equation for the boundary is

a/βκb ≈ (a/βκt )
2/8π . This implies that, for any finite value of the torsional rigidity, in the

continuum limit the tangent–tangent correlation function always decays in an oscillatory way.
The period of the oscillation is proportional to

√
aκb while the decay length, ξt , is independent

of a, ξ−1
t = 1/(4βκt ) + (1 − π/4)/(βκb). It is therefore apparent that in the continuum limit,

a → 0, the oscillation period becomes smaller and smaller, denoting a singular behaviour
of the chain. This is reminiscent of the singular behaviour of rod-like chains which, in the
continuum limit, exhibit plectonemes on smaller and smaller scales [4, 5]. From figure 2,
it is apparent that only if κt is exactly zero, one remains in the vanishingly small region of
monotonic exponential decay when the continuum limit is taken. In this case one recovers
the WLC case with persistence length ξt ∼ βκb. We now consider the case of a polymer
chain describing a thick self-avoiding tube of uniform cross-section. The finite thickness �

of the polymer impacts on two distinct conformational features. First, it constrains the local
radius of curvature to be not less than � [10, 11]. In addition, there is also a non-local
effect since any two portions of the tube, at a finite arclength separation, cannot interpenetrate
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[10, 11]. In traditional beads-and-strings models it is only this second effect that is taken
into account through a pairwise potential with a hard-core repulsion. Interestingly, one needs
to go beyond pairwise interactions to account for the above-mentioned effects in discretized
polymer chains [7, 8, 12, 13]. In fact, the requirement on the local radius of curvature can
be enforced by finding the radii of the circles going through any consecutive triplet of points
and ensuring that each of them is greater than �. The non-local effect can be addressed
within the same framework by considering the minimum radius among circles going through
any non-consecutive triplet of points is also greater than �. In summary the finite thickness,
�, of the discretized tube requires that the radii of the circles going through any triplet of
distinct points have to be greater than � (see figure 3) [11–13]. In the present context, we
are interested mainly in the local thickness effects. Therefore, we will consider the following
reduced Hamiltonian in the absence of torsional rigidity, involving only local three-body
constraints: H1 = ∑

i V (Ri−1,i,i+1), where Rijk is the radius of the circle going through the
beads i, j, k, and the potential V (R) is ∞, if R < �, and 0 otherwise. From simple geometric
considerations, the local tube constraint can be expressed in terms of the bond angle distribution
by imposing ρθ (θi) = 0 if θi > 2 arcsin(a/2�). One can see that the thickness � plays a
role similar to the bending rigidity κb, in that they both induce the chain to be locally more
straight. Yet, the scaling behaviour in the a → 0 limit is different in the tube case, since the
range of θ angles most contributing to the average has now width a/� (instead of

√
a/βκb),

yielding 〈cos θ〉 = 1 − a2/4�2 and 〈sin θ〉 ∼ 2a/3�. Since 
 = 〈cos θ〉2 ∼ 1 − a2/2�2, the
tangent–tangent correlation function decays exponentially. This is similar to the WLC case
in the absence of torsional rigidity, but in the tube model the correlation length scales in a
different way ξt ∼ �2/a. This is a pathological behaviour in the continuous limit, since the
correlation length diverges as a → 0. The recipe by which the tube constraint is implemented
for a discrete chain ends up in preferentially sampling straight continuous lines. It is natural
to associate such ill behaviour with the degeneracy in the choice of the Frenet frame which
arises for a straight line conformation5. This can in fact be cured by adding a torsional rigidity
term to the tube constraint, constraining the unphysical fluctuations of the binormal vectors
around straight line conformations. The Hamiltonian for this rod-like thick polymer is

H2 =
∑

i

V (Ri−1,i,i+1) +
κt

2a

∑
i

|b̂i+1 − b̂i |2. (5)

In this case, 〈cos φ〉 ∼ 1 − a/2βκt in the a → 0 limit, which implies ξb = 2βκt whereas we
get 
 ∼ (

a2
/

36β2κ2
t �2

)[
9�2 − 64β2κ2

t

]
. Thus, there are two different regimes, oscillatory

decay if κt > κ∗
t ≡ 3

8�/β, and monotonic decay if κt < κ∗
t . In the latter case, the persistence

length associated with the tangent–tangent correlation function is controlled by both the tube
thickness and the torsional rigidity:

ξt = 9�2

16βκt


1 +

√
1 −

(
8βκt

3�

)2

 . (6)

In the former case, the correlation length depends instead only on the torsional rigidity, whereas
the oscillation period depends also on the tube thickness:

ξt = 4βκt , χ = 3�

2

[
1 −

(
3�

8βκt

)2
]−1/2

. (7)

5 A differentiable curve, �r(s), s being the arclength parametrization, with thickness not smaller than � satisfies:
sups1,s2

|�̇r(s1) − �̇r(s2)|/|s1 − s2| � �−1 [18]. The set of curves satisfying this bound has zero Wiener measure if
the latter includes only terms up to the second derivative in �r(s) [19]. Thus, higher-order derivatives are required for
suitable measures of tubes in the continuum limit.
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Figure 3. Sketch of a curve which is a viable centreline for a tube of thickness �. The radii of the
circles through any triplet of points, rijk are not smaller than �.

Figure 4. Tangent–tangent correlation, C(s), as a function of the arclength separation, s. The
dashed and solid lines refer respectively to the analytical results from equation (2) and to the MC
simulations (maximum dispersion ≈0.01).

It can be seen from equation (6), that by increasing the torsional rigidity the tangent–tangent
correlation length ξt , initially controlled by the thickness � decreases until the threshold
κ∗

t is reached. Above such a threshold torsional rigidity takes over and the tangent–tangent
correlation length becomes equal to twice the binormal–binormal correlation length, but the
thickness signature remains in the oscillatory behaviour of the tangent–tangent correlation
function and in the period χ . The previous analysis is in good semi-quantitative agreement
with data from MC simulations on the full model (i.e. where non-local effects are retained), as
visible in figure 4. The simulations were performed on chains of 128 equispaced beads through
the Metropolis acceptance of crankshaft and pivot moves. The tangent–tangent correlations
were measured by sampling structures at intervals greater than the autocorrelation time.

To conclude, we have shown how the recently introduced thick-polymer model can be
regularized in the continuum limit by introducing a term penalizing the geometrical torsion
of the centreline. For any given value of the polymer thickness, there exists a torsional-
rigidity threshold separating the monotonic decay of the tangent–tangent correlation from the
oscillatory one. This highlights the rich behaviour of thick-polymer models which combine
features previously observed in distinct polymer models, such as the worm- or rod-like chains.
The wide use of the latter in the context of single-molecule experiments opens the possibility
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to use the physically appealing perspective of semi-flexible thick polymers to interpret the
behaviour of biopolymers.
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